
J
H
E
P
0
2
(
2
0
0
8
)
1
0
5

Published by Institute of Physics Publishing for SISSA

Received: December 21, 2007

Accepted: February 15, 2008

Published: February 28, 2008

Comments on multiple M2-branes

Jonathan Bagger

Department of Physics and Astronomy, Johns Hopkins University,

3400 North Charles Street, Baltimore, MD 21218, U.S.A.

E-mail: bagger@jhu.edu

Neil Lambert

Department of Mathematics, King’s College London,

The Strand, London WC2R 2LS, U.K.

E-mail: neil.lambert@kcl.ac.uk

Abstract: Recently a three-dimensional field theory was derived that is consistent with

all the symmetries expected of the worldvolume action for multiple M2-branes. In this

note we examine several physical predictions of this model and show that they are in

agreement with expected M2-brane dynamics. In particular, we discuss the quantization

of the Chern-Simons coefficient, the vacuum moduli space, a massive deformation leading

to fuzzy three-sphere vacua, and a possible large n limit. In this large n limit, the fuzzy

funnel solution correctly reproduces the mass of an M5-brane.

Keywords: Brane Dynamics in Gauge Theories, M-Theory, Extended Supersymmetry,

Supersymmetric Effective Theories.

mailto:bagger@jhu.edu
mailto:neil.lambert@kcl.ac.uk
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
8
)
1
0
5

Contents

1. Introduction 1

2. The field theory 2

3. Quantizing fabcd 3

4. Vacuum moduli space 4

5. BPS states and a mass deformation 6

6. The large n limit 9

7. Conclusions 11

A. Equivalence with ref. [4] 11

1. Introduction

M-branes are mysterious objects (see e.g. [1]) and virtually nothing is known about their

underlying dynamics beyond the case of a single brane. This is in sharp contrast to D-

branes [2], where a microscopic description in terms of open strings has driven a huge

amount of progress in string theory and gauge theory.

In [3] a model for multiple M2-branes was proposed in which the scalar fields take values

in an algebra that admits a totally antisymmetric tri-linear product. It was conjectured

that this model could be made maximally supersymmetric by including a non-propagating

gauge field. The corresponding supersymmetry algebra was shown to close in [4](v4) and

then in [5], where the full equations of motion and Lagrangian were given. The theory is

consistent with all the symmetries expected from multiple M2-branes.

Given a theory with the symmetries of a multiple M2-branes, it is natural to see if it

reproduces other properties expected of such systems. In this paper we will consider various

consequences of the Lagrangian presented in [5]. We will find that several predictions are

consistent with expectations, although some aspects of the algebra are not sufficiently well

developed to check them all.

The rest of this paper is organized as follows. In section 2 we review the results of

ref. [5]. In section 3 we show that consistency requires quantization of the structure con-

stants associated with the tri-linear product. This suggests that the theory is conformally

invariant to all orders in perturbation theory. In section 4 we examine the vacuum mod-

uli space of the simplest nontrivial model and argue that, surprisingly, it describes three
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M2-branes. In section 5 we consider a mass deformation of the M2-brane worldvolume

and show that it leads to fuzzy sphere vacua, as argued in [6]. In section 6 we propose an

algebra for an infinite number of M2-branes and show that, when combined with the quan-

tization conditions in section 3, it reproduces the correct energy for the supersymmetric

fuzzy funnel solutions of [7]. In the appendix we demonstrate that the approaches of [4]

and [5] are equivalent, despite their apparently different algebraic structures.

2. The field theory

The field theory derived in [5] assumes that the scalars XI , I = 3, 4, . . . , 10, and fermions

Ψ, Γ012Ψ = −Ψ, take values in a so-called three-algebra A. This is a vector space with

basis T a, a = 1, . . . , N , that is endowed with a trilinear antisymmetric product

[

T a, T b, T c
]

= fabc
d T d, (2.1)

from which it is clear that fabc
d = f [abc]

d. We further suppose there is trace-form that

provides a metric

hab = Tr
(

T a, T b
)

, (2.2)

which we assume to be positive definite. This allows us to raise and lower indices: fabcd =

fabc
eh

ed.

We require two conditions on the triple product. The first is the fundamental identity

[

T a, T b,
[

T c, T d, T e
]]

=
[[

T a, T b, T c
]

, T d, T e
]

+
[

T c,
[

T a, T b, T d
]

, T e
]

(2.3)

+
[

T c, T d,
[

T a, T b, T e
]]

,

for all a, b = 1, . . . , N . This is equivalent to

f efg
df

abc
g = f efa

gf
bcg

d + f efb
gf

cag
d + f efc

gf
abg

d. (2.4)

The second is

Tr
(

T a,
[

T b, T c, T d
])

= −Tr
([

T a, T b, T c
]

, T d
)

, (2.5)

for all a, b = 1, . . . , N . This implies that the fabcd are totally antisymmetric,

fabcd = f [abcd]. (2.6)

We augment this algebra by including an element T 0 that has a vanishing triple product

with everything, i.e. that satisfies f0ab
d = 0. Assuming h0b = 0 when b 6= 0, we find fabc

0 =

0. Thus this mode decouples and can be interpreted as the centre-of-mass coordinate.

There is a natural gauge symmetry on the fields XI
d , where δXI

d = Λabf
abc

dX
I
c ≡

Λ̃c
dX

I
c . It gives rise to a covariant derivative DµXI

d = ∂µXI
d − Ãµ

c
dX

I
c , with δÃµ

c
d =

DµΛ̃c
d, as well as a gauge-covariant field strength F̃µν

c
d. The space of all Λ̃c

d is closed

under the ordinary matrix commutator, so it generates a matrix Lie algebra G. From this

perspective, Ãµ
c
d is the usual gauge connection in the adjoint representation of G, while
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the elements of A are in the fundamental representation. The fundamental identity implies

that fabcd is an invariant 4-form of G.

The Lagrangian derived in [5] is

L = −1

2
DµXaIDµXI

a +
i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓIJXI

c XJ
d Ψaf

abcd

−V (X) +
1

2
εµνλ

(

fabcdAµab∂νAλcd +
2

3
f cda

gf
efgbAµabAνcdAλef

)

,

(2.7)

where

V (X) =
1

12
Tr

([

XI ,XJ ,XK
]

,
[

XI ,XJ ,XK
])

(2.8)

and Ãµ
c
d = Aµabf

abc
d. The Lagrangian is invariant, up to boundary terms, under the

transformations

δXI
a = iǭΓIΨa

δΨa = DµXI
aΓµΓIǫ − 1

6
XI

b XJ
c XK

d f bcd
aΓ

IJKǫ (2.9)

δÃµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a,

where Γ012ǫ = ǫ. These transformations close into translations and gauge transformations.

Thus the action has 16 supersymmetries. It also has a manifest SO(8) R-symmetry that

acts on the scalars XI . Furthermore, the action preserves parity if fabcd is taken to be

parity odd. These are precisely the symmetries that are expected of the worldvolume

description of multiple M2-branes.

This action provides a non-Abelian generalization of the single M2-brane action and

describes M2-branes propagating in a flat eleven-dimensional spacetime. As such, it pre-

sumably arises as the lowest-order term in a derivative expansion in static gauge of some

new κ-symmetric action that generalizes the Born-Infeld action of D-branes. It would be

interesting to study this in more detail; however to date, non-Abelian κ symmetry is poorly

understood. Here we are compelled to test the predictions of this model against various

expectations for multi M2-branes.

3. Quantizing fabcd

Classically, given any choice of structure constants that satisfies the conditions of a three-

algebra, namely (2.4) and (2.6), one can rescale the fabcd and preserve the defining con-

ditions. In a quantum theory, however, the coefficient of a Chern-Simons term must be

quantized. Therefore, for the case at hand, we expect such a constraint on the fabcd.

To proceed further, we observe that fabcd defines a linear map acting on the vector

space of antisymmetric N × N matrices,

f(Mab) =
1

2
f cd

ab Mcd, (3.1)
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where we use hab and its inverse to raise and lower indices. Using the natural inner product,

〈M1,M2〉 = M1
abM

2ab, one sees that the map is real and symmetric. Therefore it can be

diagonalized with eigenvalues that we denote by λ. Using the fundamental identity, one

can show that if M1
ab and M2

ab are matrices with eigenvalues λ1 and λ2, respectively, then

f
([

M̃1, M̃2
])

= λ2

[

M̃1, M̃2
]

, (3.2)

where M̃ c
d = fabc

dMab and [M̃1, M̃2] is the ordinary matrix commutator. Thus each

eigenspace of f is closed under commutation and defines a Lie subalgebra Gλ ⊂ G.

It follows from (3.2) that

f
([

M̃1, M̃2
])

= −f
([

M̃2, M̃1
])

= −λ1

[

M̃2, M̃1
]

= λ1

[

M̃1, M̃2
]

, (3.3)

and hence

λ1

[

M̃1, M̃2
]

= λ2

[

M̃1, M̃2
]

. (3.4)

This shows that [M̃1, M̃2] = 0 if λ1 6= λ2. Thus the various sub-algebras Gλ commute and

G decomposes as

G = ⊕λGλ. (3.5)

As a result of this fact, we can choose a basis in which the twisted Chern-Simons term is

∑

λ6=0

1

4λ
Tr

(

Ã(λ) ∧ dÃ(λ) +
2

3
Ã(λ) ∧ Ã(λ) ∧ Ã(λ)

)

, (3.6)

where Ã(λ) = Ã
(λ)
µ dxµ is the projection of the gauge field onto the eigenspace Gλ, and

ordinary matrix multiplication is understood to apply. It is well known that for the path

integral to be well-defined, the coefficient of a Chern-Simons term must be k/4π, where

k ∈ Z [8] is called the level. Thus we see that the eigenvalues of f must satisfy

λ =
π

k
(3.7)

for each λ, with k ∈ Z. In the quantum theory, there is no freedom to rescale the fabcd. For

simplicity, in the rest of this paper we only consider the case k = 1. It would be interesting

to examine the physical interpretations of other values of k.

Note that the quantization of fabcd suggests that there are no continuous parameters in

the theory. If so, the theory must be conformally invariant to all orders in perturbation the-

ory; since there are no coupling constants, there are no parameters to run. Supersymmetry

determines them once and for all.

4. Vacuum moduli space

To explore the connection between our theory and multiple M2-branes, it is natural to

start with the vacuum moduli space. Setting Ãµ = Ψ = ∂µXI = 0, the requirement that

all supersymmetries be preserved implies that

[

XI ,XJ ,XK
]

= 0, (4.1)

– 4 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
5

for all XI . This condition also ensures that the equations of motion are satisfied.

Let us focus on the simplest nontrivial possibility, in which the three-algebra A has

four generators and hence, given the quantization condition found above,

fabcd = πεabcd, (4.2)

where a, b = 1, 2, 3, 4. Without loss of generality, we take hab = δab. We call this three-

algebra A4; one can check that it satisfies the fundamental identity. The solutions to the

vacuum equations (4.1) are given by

XI = aIα + bIβ, (4.3)

where α and β are any two elements of A4.

We next consider the gauge transformations. For the case at hand, the Lie algebra

G4 is generated by εabc
dΛab, where Λab is real and antisymmetric. Thus G4 is nothing but

the set of all antisymmetric real 4 × 4 matrices, i.e. G4 = so(4) ≡ so(3) ⊕ so(3). The

elements α, β ∈ A4 are in the fundamental representation of SO(4). Therefore, up to a

gauge transformation, we can set α ∝ T 1. Furthermore, using the little group SO(3) of T 1

we can also choose β ∝ T 2. Thus, up to a gauge transformation, the vacuum moduli space

is parameterized by

XI = aIT 1 + bIT 2. (4.4)

This result implies that there are two bosonic zero modes for each of the coordinates

XI . Including the overall center-of-mass generator T 0, which decouples from all the inter-

actions and gauge symmetries, we find three bosonic zero modes for each scalar XI . As

with multiple D-branes, M2-branes satisfy a no-force condition and hence the most natural

interpretation for these zero modes is that they correspond to moving the M2-branes apart

in transverse directions. Therefore we are led to identify the Lagrangian with the world-

volume theory of three M2-branes. Note that this argument assumes that our construction

describes a generic point in the moduli space; at special points there may be fewer degrees

of freedom.1

It seems peculiar that the simplest nontrivial model describes three M2-branes, rather

than two. Let us therefore make some comments as to why this might be the case. If we

think of the worldvolume theory of n M2-branes as the IR fixed point of three-dimensional

U(n) super-Yang-Mills theory, then we expect fewer than n2 degrees of freedom per field

in the IR. The smallest three-algebra must have at least four generators, and including the

center-of-mass gives a total of five degrees of freedom per field. Thus one would not expect

this algebra to arise as the IR fixed point of two D2-branes, but rather as the fixed point

of three D2-branes. We note that the number N of degrees of freedom of n M2-branes is

conjectured to scale as N = n3/2 at large n, and it is encouraging to observe that 33/2 ∼ 5.2.

A possible resolution is that the IR fixed point of two D2-branes is trivial. It is natural

to expect that the worldvolume theory of two D2-branes loses at least one degree of freedom

in the IR, leaving at most three. Factoring out the center-of-mass would then leave at most

1We are grateful to M. van Raamsdonk for bringing this point to our attention.
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two interacting degrees of freedom. This might be too few to construct a theory that is

consistent with all the symmetries (even without assuming a Lagrangian description). In

particular, it is too small to identify the fields with elements of a Lie algebra.

A more detailed analysis of the degrees of freedom requires finding a class of three-

algebras with arbitrarily large dimension N . At present we do not know of any other

finite-dimensional cases. However, we can make some observations. For N > 4 the map

f must have a nontrivial kernel, for the following reason. Suppose it has a trivial kernel.

Then the space G of all Λ̃c
d = fabc

dΛab would be all of so(N). In that case fabcd would be an

invariant four-tensor of so(N), but there are no such invariants for N > 4. A non-vanishing

kernel would lead to additional vacuum moduli and hence a larger number of M2-branes.

5. BPS states and a mass deformation

In ref. [6], it was argued that in the presence of a particular background four-form flux,

M2-branes preserve four supersymmetries and exhibit an SO(4) R-symmetry. Furthermore,

the flux induces a supersymmetric mass term for the worldvolume scalars and fermions. It

was also argued that in this background, the vacuum of n M2-branes is a state in which

the scalars describe a fuzzy three-sphere in spacetime. The M2-branes ‘puff up’ so that

their worldvolume is of the form R
1,2 × S̃3, where S̃3 is a fuzzy three-sphere that becomes

a normal S3 as n → ∞. This setup provides an M-theory analog of the Myers effect that

occurs for D-branes in the presence of background fluxes [9].

In this section we search for such solutions to our theory. Since we are not interested in

the gauge fields and fermions, we truncate the Lagrangian to include only the scalar fields,

LB = −1

2
Tr

(

∂µXI , ∂µXI
)

− 1

12
Tr

([

XI ,XJ ,XK
]

,
[

XI ,XJ ,XK
])

. (5.1)

Consistency requires that XA
a ∂µXA

b fabc
d = 0, which follows from the gauge field equation

of motion. This relation is satisfied in all the solutions discussed below.

We search for solutions with four non-vanishing scalars, which we denote by XA,

A = 1, 2, 3, 4. The search is simplified by writing the potential in the following form,

V (X) =
1

2
Tr

(

∂AW,∂AW
)

, (5.2)

where

W =
1

24
εABCDTr

(

XA,
[

XB ,XC ,XD
])

(5.3)

is the ‘superpotential.’ We add an SO(4) symmetric mass term by generalizing (5.3) to

W =
1

2
mTr

(

XA,XA
)

+
1

24
εABCDTr

(

XA,
[

XB ,XC ,XD
])

. (5.4)

Vacuum solutions require ∂AW = 0, or

mXA = −1

6
εABCD

[

XB ,XC ,XD
]

. (5.5)
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In addition to the trivial solution XA = 0, eq. (5.5) has a fuzzy S3 solution in which the

M2’s puff up into a fuzzy three-sphere. The two solutions describe two zero-energy vacuum

states of the M2-brane in the four-flux background.

To construct the fuzzy three-sphere vacuum, we suppose that the three-algebra admits

a representation of A4, so the four generators TA satisfy
[

TA, TB , TC
]

= πεABCDTD. The

solution is found by taking

XA =

√

m

π
TA, (5.6)

with m > 0. It describes a fuzzy three-sphere with radius proportional to
√

m, in agreement

with [6]. In the case of D-branes, physically distinct vacua arise from different representa-

tions of the symmetry algebra [9]. Presumably, there is a similar family of solutions here,

corresponding to different numbers of M2-branes. We will not attempt to discuss them

further because we lack a sufficient understanding of three-algebra representations.

We can also construct the BPS fuzzy funnel solutions of [3, 7], in which the M2-branes

end on an M5-brane. Following Bogomoln’yi, we consider static solutions that depend on

one coordinate x2 = s. We write the energy as

E =
1

2

∫

dsdx1Tr

(

dXA

ds
− ∂AW,

dXA

ds
− ∂AW

)

+ 2∂AW
dXA

ds

=
1

2

∫

dsdx1Tr

(

dXA

ds
− ∂AW,

dXA

ds
− ∂AW

)

+ 2
dW

ds
.

Therefore, up to a boundary term, the minimum energy solutions satisfy

∂2X
A = ∂AW = mXA +

1

6
εABCD

[

XB ,XC ,XD
]

. (5.7)

The fuzzy funnel solution is found by taking

XA = f(s)TA, (5.8)

where s = x2 and again the TA satisfy
[

TA, TB , TC
]

= πεABCDTD. The equation for f is

f ′ = mf − πf3; (5.9)

the solution is

f =

√

m

π

1√
1 − ce−2ms

, (5.10)

where c is a constant, which by translation can be set to ±1.

If c = +1 and m > 0, the solution behaves as f = 1/
√

2πs for small but positive s.

It approaches f →
√

m/π as s → ∞. If m < 0, the function f has the same behavior

at small and positive s, but f → 0 as s → ∞. These solutions describe fuzzy funnels in

which an infinite radius fuzzy three-sphere at s = 0 relaxes into the fuzzy sphere or the

trivial vacuum, respectively, as s → ∞. The spacetime interpretation of these solutions is

that they correspond to M2-branes that end on a single M5-brane, located at s = 0 and

infinitely extended along the (x0, x1, x2, x3, x4, x5) directions.
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On the other hand, if c = −1 and m > 0, the function f is bounded. It vanishes

exponentially as s → −∞ and approaches f →
√

m/π as s → ∞. Here there is no

divergent fuzzy funnel, i.e. no M5-brane. This solution smoothly interpolates between

the trivial and fuzzy sphere vacua. In other words, it is a traditional domain wall that

interpolates between two degenerate vacuum solutions of the worldvolume effective action.

We conclude this section by explicitly checking the predictions for the energy of the

fuzzy funnel and the physical radius of the fuzzy three-sphere vacuum. We follow [7] and

calculate the total (divergent) energy of a fuzzy funnel solution, with m = 0,

E =

∫ ∞

−∞

dx1

∫ ∞

0
dsTr

(

∂2X
A, ∂2X

A
)

= Tr
(

TA, TA
)

∫ ∞

−∞

dx1

∫ ∞

0
dsf ′2 (5.11)

= πTr
(

TA, TA
)

∫ ∞

−∞

dx1

∫ ∞

0
f3df.

Next we introduce the physical fuzzy sphere radius, R, which is defined to be the root

mean square radius, averaged over the n M2-branes,

R2 =
Tr

(

XA,XA
)

nT2

=
Tr

(

TA, TA
)

nT2
f2. (5.12)

Note that we have inserted a factor of the membrane tension, T2. This follows from the fact

that XA is canonically normalized and hence has mass dimension 1/2. Thus it cannot be

directly interpreted as a spacetime coordinate. Instead, the spacetime coordinates should

be identified with XA/
√

T2, which has the dimension of length. This change of variable

rescales the kinetic term of the action to

L = −T2

2
Tr

(

∂µXI , ∂µXI
)

+ · · · , (5.13)

as expected for a membrane with tension T2.

From these expressions we have what we need to compute the energy:

E =
T 2

2

2π

n2

Tr(TA, TA)

∫ ∞

−∞

dx1

∫ ∞

0
2π2R3dR

= T5
n2

Tr(TA, TA)

∫

d5x, (5.14)

where we have used the fact that T 2
2 = 2πT5 [10]. This expression, at least in the large n

limit, should reproduce the energy of an infinite M5-brane with tension T5. This implies

that

Tr
(

TA, TA
)

= n2 (5.15)

at large n. Unfortunately, we do not know enough about the representations of three-

algebras to confirm this prediction.
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Finally, we return our attention to the fuzzy three-sphere vacuum described above.

Using (5.13), we see that in the large n limit, the physical radius is

R2 =
Tr

(

XA,XA
)

nT2

=
m

π

Tr
(

TA, TA
)

nT2

=
mn

πT2
, (5.16)

where we have used (5.15). In the units of [6], the tension T2 = M3
11/4π

2, and hence

R2 =
4πmn

M3
11

. (5.17)

This agrees with the result in [6], up to a factor 4/3.

The energy density for the smooth domain wall that arises when c = −1 and m > 0

can also be calculated. We find

E =

∫ ∞

−∞

dsTr
(

∂2X
A, ∂2X

A
)

= Tr
(

TA, TA
)

∫ ∞

−∞

dsf ′2 (5.18)

=
m2

4π
Tr

(

TA, TA
)

=
m2n2

4π
,

where the last line assumes the large-n relation (5.15).

6. The large n limit

In this section we propose a large n limit for the three-algebra A. A natural infinite-

dimensional example of a three-algebra is given by the space C∞(Σ) of differentiable func-

tions on a closed three-manifold Σ endowed with a metric. For simplicity we assume that

Σ is compact without boundary and with a finite volume. In this case the triple product

is given by the Nambu bracket [11]

[X,Y,Z] = −π ⋆ (dX ∧ dY ∧ dZ) . (6.1)

It can be shown that (6.1) satisfies the fundamental identity. Furthermore, if we take

Tr(X,Y ) =
1

vol(Σ)

∫

Σ
X ∧ ⋆Y, (6.2)

then (6.1) also satisfies (2.5). Note that we have normalized the trace-form so that the

identity function has unit length (and can be identified with the translational generator T 0).
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For this three-algebra, the gauge symmetry generated by the Nambu bracket is

δX = [α, β,X]

= vk∂kX, (6.3)

where vk = −(π/
√

g)εijk∂iα∂jβ and σi, i = 1, 2, 3 are local coordinates on Σ. This

transformation is nothing but an area-preserving diffeomorphism on Σ.

We wish to consider the large n limit of the fuzzy three-sphere vacua found in the

previous section. To do this we need to find a representation of A4 inside C∞(Σ). Since we

need an so(4) symmetry it is natural to take Σ = S3, the unit sphere inside R
4. We then

consider the four functions TA that describe the natural embedding of S3 into R
4:

T 1 = cos θ1

T 2 = sin θ1 cos θ2

T 3 = sin θ1 sin θ2 cos θ3 (6.4)

T 4 = sin θ1 sin θ2 sin θ3.

One finds that these functions satisfy (see also [12])

[

TA, TB, TC
]

= πεABCDTD, (6.5)

and also Tr(TA, TB) = 1
4δAB . Thus the functions TA provide a representation of A4 inside

C∞(S3).

We now return to the fuzzy funnel solution. In the infinite n limit, we expect that the

fuzzy sphere loses its ‘fuzziness.’ We define the physical radius to be (cf (5.13))

R2 =
Tr

(

XA,XA
)

T2
. (6.6)

Following the calculations of the previous section, we find that the energy of the fuzzy

funnel is

E = T5

∫

d5x, (6.7)

which exactly reproduces the tension of an M5-brane.

It seems natural to propose that this three-algebra is the large n limit of the finite

dimensional three-algebras that describe n M2-branes. It is tempting to further speculate

that the three-manifold Σ should somehow be identified with the worldvolume of the M2-

branes (or possibly with the worldvolume of an open M2-brane that plays a role analogous

to the one that open strings play in the definition of D-branes). The gauge symmetries

are then simply the area preserving diffeomorphisms of the M2-brane worldvolume. Note

that the gauge field is non-dynamical with a Chern-Simons-like kinetic term, and that this

is consistent with identifying it with the metric in three dimensions. Is it intriguing to

note that area-preserving diffeomorphism have previously been associated with the gauge

symmetry of M2-branes [13].

Furthermore, we observe that if Σ is the worldvolume of the M2-branes, then under a

parity transformation the triple product (6.1) changes sign. This would then explain why

one needs to have fabcd → −fabcd in the finite dimensional cases to preserve parity.
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7. Conclusions

In this paper we have analyzed various physical aspects of the multiple M2-brane La-

grangian proposed in [5]. In particular, we discussed the quantization of fabcd that is

required by the quantum theory, the vacuum moduli space of the simplest example, and

various features of fuzzy sphere vacua and fuzzy funnels. We also proposed a natural infinite

n three-algebra, and showed that it correctly produces the energy density of a fuzzy-funnel

solution, with no arbitrary parameters. In so far as we have been able to check, the theory

is consistent with all expectations. It would also be interesting to compare this model with

predictions from the BFFS matrix model description of M-theory [14].

We believe that the most pressing open issue is obtaining an infinite class of three-

algebras that can represent an arbitrary number of M2-branes. There is a large literature

on related algebras that arise from quantization of the Nambu bracket, starting with the

work of [11, 15]. However, much of this literature imposes slightly different conditions on

the triple-product, such as a Leibnitz property that we do not require or a generalized

Jacobi identity that is weaker than the fundamental identity (for example see [16]). With

such a class of three-algebras, one would presumably be able to analyze the vacuum moduli

spaces and deduce the infamous relation N = n3/2. (For an alternative derivation, see [17].)

Finally, we note that in this paper we have restricted our attention to the algebraic

structure presented in [3, 5]. However, as shown in the appendix, there is an equivalent

definition that was introduced in [4]. The relation between the two is worth exploring in

greater detail.
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A. Equivalence with ref. [4]

In [4], Gustavsson presented an algebraic structure in which there are two vector spaces A
and B. For α, β ∈ A and A,B ∈ B, he considered bi-linear products of the form

〈α, β〉 = −〈β, α〉 ∈ B
(A,α) ∈ A (A.1)

[A,B] = −[B,A] ∈ B,

as well as the ‘associative’ condition

(〈α, β〉, γ) = (〈β, γ〉, α). (A.2)
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He then imposed the ‘Jacobi’ identities

〈(A,α), β〉 − 〈(A, β), α〉 = [A, 〈α, β〉]
(A, (B,α)) − (B, (A,α)) = ([A,B], α) (A.3)

[[A,B], C] + [B, [A,C]] = [A, [B,C]].

Note that the final condition is simply the statement that B is a Lie algebra. With these

structures we can construct a tri-linear product on A,

[α, β, γ] ≡ (〈α, β〉, γ). (A.4)

Note that this triple product is manifestly antisymmetric in α ↔ β and the associative

condition (A.2) further implies that it totally antisymmetric in α, β, γ.

We will first show that Gustavsson’s structure satisfies the fundamental identity cited

in [5]. Using the second Jacobi identity, we find

[α, β, [γ, δ, ǫ]] = (〈α, β〉, (〈γ, δ〉, ǫ))
= (〈γ, δ〉, (〈α, β〉, ǫ)) + ([〈α, β〉, 〈γ, δ〉], ǫ) (A.5)

= [γ, δ, [α, β, ǫ]] + ([〈α, β〉, 〈γ, δ〉], ǫ),

The second term on the right-hand side can be rewritten using the first Jacobi identity as

[〈α, β〉, 〈γ, δ〉] = 〈(〈α, β〉, γ), δ〉 − 〈(〈α, β〉, δ), γ〉
= 〈[α, β, γ], δ〉 − 〈[α, β, δ], γ〉, (A.6)

and hence

([〈α, β〉, 〈γ, δ〉], ǫ) = [[α, β, γ], δ, ǫ] − [[α, β, δ], γ, ǫ]. (A.7)

Thus we see that

[α, β, [γ, δ, ǫ]] = [γ, δ, [α, β, ǫ]] + [[α, β, γ], δ, ǫ] + [γ, [α, β, δ], ǫ], (A.8)

which is the fundamental identity. This proves that the algebraic structure introduced

in [4] satisfies the algebraic condition in [5].

To show equivalence, we also need to prove the other way around. Therefore we start

with the algebraic structure used in [5], consisting of a single vector space A with elements

α, β, . . ., and a tri-linear totally antisymmetric product

[α, β, γ] ∈ A (A.9)

that satisfies the fundamental identity

[α, β, [γ, δ, ǫ]] = [[α, β, γ], δ, ǫ] + [γ, [α, β, δ], ǫ]] + [γ, δ, [α, β, ǫ]], (A.10)

and show that how to construct bilinear products that obey the relations (A.1) – (A.3).
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For X ∈ A, we can define a vector space of linear maps from A to itself, generated by

asα,β(X) = [α, β,X], (A.11)

This is the space B, with elements generated by A = asα,β. (In [5], this space was denoted

by G.) One sees, using the fundamental identity, that

[α1, β1, [α2, β2,X]] − (1 ↔ 2) = [[α1, β1, α2], β2,X] + [α2, [α1, β1, β2],X]. (A.12)

This shows that asα1,β1
◦ asα2,β2

− asα2,β2
◦ asα1,β1

is again an element of B. In fact, linear

maps of a vector space to itself are associative under composition, so B is a Lie algebra

using the ordinary commutator, satisfying the Jacobi identity (which is the final condition

in (A.3)). Equation (A.12) also shows that

[A1, A2](X) = [[α1, β1, α2], β2,X] + [α2, [α1, β1, β2],X], (A.13)

where Ai denotes the map Ai(X) = asαi,βi
(X). Thus the right hand side is actually

anti-symmetric in A1 ↔ A2.

The rest of algebraic structure introduced in [4] can be constructed as follows. It is

natural to define

〈α, β〉 = asα,β, (A.14)

and

(A,α) = asA(α). (A.15)

The condition (A.2) then follows from the antisymmetry of [α, β, γ]. To prove (A.3), we

compute

〈(A,α), β〉(X) − 〈(A, β), α〉(X) = [asA(α), β,X] − [asA(β), α,X]

= [asA(α), β,X] + [α, asA(β),X]

= [asA, asα,β](X) (A.16)

= [asA, 〈α, β〉](X)

for arbitrary X. This reproduces the first condition in (A.3). We then compute

(A, (B,α)) − (B, (A,α)) = asA(asB(α)) − asB(asA(α))

= [asA, asB ](α) (A.17)

= ([A,B], α),

which is the second condition in (A.3). Thus a three-algebra that satisfies the fundamental

identity also provides an example of the algebraic structure in [4]. This proves that the

two approaches are, in fact, equivalent.
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